Temporal Coordination of Gene Networks by Zelda in the Early Drosophila Embryo
نویسندگان
چکیده
In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld. We found that Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation. In the absence of Zld, many target genes failed to be activated, while others, particularly the patterning genes, exhibited delayed transcriptional activation, some of which also showed weak and/or sporadic expression. These effects disrupted the normal sequence of patterning-gene interactions and resulted in highly altered spatial expression patterns, demonstrating the significance of a timing mechanism in early development. In addition, we observed prevalent overlap between Zld-bound regions and genomic "hotspot" regions, which are bound by many developmental transcription factors, especially the patterning factors. This, along with the finding that the most over-represented motif in hotspots, CAGGTA, is the Zld binding site, implicates Zld in promoting hotspot formation. We propose that Zld promotes timely and robust transcriptional activation of early-gene networks so that developmental events are coordinated and cell fates are established properly in the cellular blastoderm embryo.
منابع مشابه
Pattern formation by graded and uniform signals in the early Drosophila embryo.
The early Drosophila embryo is patterned by graded distributions of maternal transcription factors. Recent studies revealed that pattern formation by these graded signals depends on uniformly expressed transcriptional activators, such as Zelda. Removal of Zelda influences both the timing and the spatial expression domains for most of the genes controlled by maternal gradients. We demonstrate th...
متن کاملSTAT Is an Essential Activator of the Zygotic Genome in the Early Drosophila Embryo
In many organisms, transcription of the zygotic genome begins during the maternal-to-zygotic transition (MZT), which is characterized by a dramatic increase in global transcriptional activities and coincides with embryonic stem cell differentiation. In Drosophila, it has been shown that maternal morphogen gradients and ubiquitously distributed general transcription factors may cooperate to upre...
متن کاملZelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo.
The transition from a specified germ cell to a population of pluripotent cells occurs rapidly following fertilization. During this developmental transition, the zygotic genome is largely transcriptionally quiescent and undergoes significant chromatin remodeling. In Drosophila, the DNA-binding protein Zelda (also known as Vielfaltig) is required for this transition and for transcriptional activa...
متن کاملDev108118 2108..2118
Transcription factors and microRNAs (miRNAs) are two important classesof trans-regulators indifferential geneexpression. Transcription factors occupy cis-regulatory motifs in DNA to activate or repress gene transcription, whereas miRNAs specifically pair with seed sites in target mRNAs to trigger mRNA decay or inhibit translation. Dynamic spatiotemporal expression patterns of transcription fact...
متن کاملQuantitative Single-Embryo Profile of Drosophila Genome Activation and the Dorsal-Ventral Patterning Network.
During embryonic development of Drosophila melanogaster, the maternal-to-zygotic transition (MZT) marks a significant and rapid turning point when zygotic transcription begins and control of development is transferred from maternally deposited transcripts. Characterizing the sequential activation of the genome during the MZT requires precise timing and a sensitive assay to measure changes in ex...
متن کامل